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5-Substituted l-methylpyrazoles were easily obtained in good yields by the
attack of nucleophiles (NaCN, H,O, BtSH, pyrazole, imidazole) to 2,6-dimethyl-
1-(2-methylpyrazol-1-io)-4-phenylpyridinium bistetrafluoroborate (1lb), without
significant formation of any 3-substituted isomer.

Despite the great number of methods described for the preparation of substituted
pyrazoles, a wide-scope reaction for the selective introduction of groups at the
3- or 5-position of the pyrazole nucleus is still lacking.2 We have recently
reported3 that cyanide ion reacts smoothly at room temperature with the dication
(la), yielding a 1l:1 mixture of 5-cyano-l-methylpyrazole (2) and collidine,
without traces of the 3-cyano isomer. The reaction was an extension to azoles of
the well-known Ratritzky's activation of primary amines towards SN reactions by

means of their transformation into pyridinium cations,4 and probably involves an

addition-elimination mechanism,3’5 according to the following Scheme:
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We report herein the straightforward synthesis of pyrazoles (2)-(6) from (1lb), a

dication which practically eliminates the concurrent attack of nucleophiles on

the pyridinium moiety, a serious side-reaction found during the previous studies

with (la).3 Compounds (2)-(6) are representative examples of novel or tediously

multi-step accessible pyrazoles, and their synthesis illustrates the use of

either C~-, O-, S-, or N-nucleophiles in the reaction.

For the synthesis of (1b), l-aminopyrazole (1.33 g, 0.016 mol)8 and 2, 6-dimethyl-

4-phenylpyrylium tetrafluoroborate9 were refluxed in dry ethanol (50 cm3) for

1 h. Crystals of 2,6-dimethyl-4-phenyl-1-(l-pyrazolyl)pyridinium tetrafluorchorate
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(7) mp 201-203°ct0:11

0.01 mol) was heated (100°C, 4h) in freshly distilled dimethyl sulphate (15 cm3x

The solution was cooled, and the crystalline product filtered, washed with dry

(3.30 g, 98%) separated on cooling. The salt (3.44 g,

ethanol, and dissolved in the minimum amount of hot 50% ag. HBF
the bisfluoroborate of (1b), mp 221—222°C10'1l
of diethyl ether. The yield was 3.78 g (75%).
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The reactions of (1lb) with nucleophiles were typically performed in water at
room temperature, and monitored by lH nmr for disappearence of the starting
compound. Final products were obtained by direct extraction or evaporation of

the resulting solutions, and purified as indicated in Table 1.

Table 1. Reactions of (1b)(1.0 mmol) with nucleophiles in H7O at 25°C.
Product Reaction conditions Physical data Isolated yield
(2)  0.2M NaCN (6 cm>,1.2 mmol) Mp 23-27°C ca. 1008°

1 h? Bp 90°C/8 torr
3
(3) H,0 (25CC§ ) Mp 105.5-110.5°C® 708t
30 days™’
3
(4) EtSH (2.5 mmol) + H20 (10 cm™) Bp 45°C/0.01 torr 8O%f
c,g
7 days
3
(5) 0.04M pyrazole (25 cm™,1.0 mmol) Bp 85°C/2 torr 73%f
a
15 days
(6)  0.04M imidazole (25 cm>,1.0 mmol) Mp 54.5-55°C 858t
12 h€ Bp 80°C/0.002 torr

fpurified by bulb-to-bulb distillation; bA GC-MS analysis of the crude extract
showed also traces (<1%) of 2-hydroxymethyl-6-methyl-4-phenylpyridine and
2-cyanomethyl-6-methyl-4-phenylpyridine, but no 3-cyano-l-methylpyrazole (ref.3);
CPurified by colunn chromatography;dUse of DM§67H20 enhanced rate, but yielded
also significant amounts of 3-hydroxy-l-methylpyrazole; ©Lit. (ref.12) 112.5-
119.5°C; fIsomeric 3-substituted l-methylpyrazole was not detected by 1y nmr in
the crude reaction mixture;9Use of NaSEt/DMSO afforded also 15-20% of
2-ethylthiomethyl-6-methyl-4-phenylpyridine.

(3)12

Structures (2)3 and were identified by comparison with authentic samples,

prepared by unambiguous routes. For the rest of pyrazoles (4)-(6),1H and 13C nmr

assignment criteria were used. Both the relatively small solvent effects on the 1
chemical shift of the H3 signal13 and the long-range 2J coupling constants14 for
C3 and C4 (Table 2) demonstrated the 1,5-disubstituted pattern of the pyrazole

nucleus. Moreover, in the case of (5), the 1,3-disubstituted isomer (9) was also
15 The nmr data for (9) [lH

6.65 (C6D6)], showing

accessible by methylation of 1,3(5)-bipyrazole (8).

nmr chemical shift for H_.: 7.33 (CDCl3), 7.74 (DMSO-4d
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large solvent shifts, and the 13 4 and C5
2

(2J=8.8; J=8.1) are in full accord and complementary to the assignments of
Table 2.

) /:)\ N { O\ N ¢ N
N NHNH,- 2HCl ——= HN‘N/ N \: - - N\N N~ \; + Me’N‘N/ N~ \7
pr— | — — -
Me
(8 (5)

C long-range coupling constants for C

N
H
(9)

Table 2. Spectroscopic assignment of pyrazoles (4)-(6).

lH Nmr chemical shifts 13C Nmr chemical shifts and C-H coupling
for Hy constants (Hz) in CDCl3b
a
cpcl,? DMSO-d,  CD, c, c,
4 7.47 7.43 7.49 138.7 111.2 133.6°
l5=185.7; 20=5.7 lg=178.1; 23=10.5
5 7.43 7.52 7.38 138.1 100.1 139.0°
l=187.3; 2g=4.2 l3=178.9; 23=10.9
6 7.55 7.53 7.31 138.8 102.5 135.7°
1 2 1 2

J=188.3; “J=4.6 J=179.6; “J=10.4

4other signals: (4) 1.25 and 2.76 (J=7.4Hz) (SEt 3.91(NMe), and 6 33(J=1.9)

)
(H,); (5) 3.80(nMe), 6.21(J=2.0)(H,), 6.41(H,,), 7.58(J=2.5)( , and 7.71
(J21.8Hz) (H5,); (6) 3.72(NMe), 6. 3%(3=2. 0)(x,), 7.10°(4,,), 7. 57 (H,,), and
7.68(H,,) -
Pother Zignals: (4) 14.7 and 30.2 (SEt), 36.5(1J=139.9)(NMe). (5) 30.7(tg=
127 O)(NMe), 107. 2(1J 178.4;2J=10.5;273=8.6)(C,,), 131.3(lJ= 189 1;27=9. 2-3J—
Cg and 141.9(1lg= 186 8;2J 6.li3J=8,6)(é3.); (6) 35.7(1J=140.8) (NMe),

120 5 iJ 192 1;J=15.2) (C, 130.5(17=191.8;3210.5) (C,,), and 138.0(lJ=

218. 4)(C
Complex nultlplet.

We believe that both steric and electronic factors govern the high selectivity
found in the reactions of (1b) with nucleophiles. The steric hindrance caused
by methyl substituents at positions 2 and 6 of the pyridinium cation is expected
to favor the attack of the reagent at position 3 of the pyrazolium ring.l7
Furthermore, a theoretical MNDO calculation18 carried out on the model compound
1-(2-methylpyrazol~l-io)pyridinium dication (10), showed a higher charge density

(net atomic charge) at position 3 than at position 5.

+0.2308 -0.1233 Although from a molecular orbital point of view position

-0. 15594__j>-wh202l 3 was also anticipated to be more reactive (zc2 for
Me” N -0.1329 positions 3 and 5, taking into account the whole set of

N %2375294 unoccupied orbitals, were estimated as 0.00692 and

(:) -0.0706 0.00123, respectively), the small magnitude of the

(10) 4071538 values strongly suggests electrostatic rather than

molecular orbital control for these reactions.
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